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The hypothalamus–pituitary–thyroid feedback control is a dynamic, adaptive system. 
In situations of illness and deprivation of energy representing type 1 allostasis, the 
stress response operates to alter both its set point and peripheral transfer parameters. 
In contrast, type 2 allostatic load, typically effective in psychosocial stress, pregnancy, 
metabolic syndrome, and adaptation to cold, produces a nearly opposite phenotype 
of predictive plasticity. The non-thyroidal illness syndrome (NTIS) or thyroid allostasis in 
critical illness, tumors, uremia, and starvation (TACITUS), commonly observed in hospi-
talized patients, displays a historically well-studied pattern of allostatic thyroid response. 
This is characterized by decreased total and free thyroid hormone concentrations and 
varying levels of thyroid-stimulating hormone (TSH) ranging from decreased (in severe 
cases) to normal or even elevated (mainly in the recovery phase) TSH concentrations.  
An acute versus chronic stage (wasting syndrome) of TACITUS can be discerned. The 
two types differ in molecular mechanisms and prognosis. The acute adaptation of thyroid 
hormone metabolism to critical illness may prove beneficial to the organism, whereas the 
far more complex molecular alterations associated with chronic illness frequently lead 
to allostatic overload. The latter is associated with poor outcome, independently of the 
underlying disease. Adaptive responses of thyroid homeostasis extend to alterations 
in thyroid hormone concentrations during fetal life, periods of weight gain or loss, ther-
moregulation, physical exercise, and psychiatric diseases. The various forms of thyroid 
allostasis pose serious problems in differential diagnosis of thyroid disease. This review 
article provides an overview of physiological mechanisms as well as major diagnostic 
and therapeutic implications of thyroid allostasis under a variety of developmental and 
straining conditions.
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FigURe 1 | Altered concentrations of thyroid hormones in certain life situations may result from type 1 allostatic load (comprising thyrotropic adaptation, 
hypodeiodination, and decreased protein binding of thyroid hormones), type 2 allostatic load [showing increased thyroid-stimulating hormone (TSH) release, 
hyperdeiodination, and augmented binding of thyroid hormones to plasma proteins], and non-homeostatic mechanisms including methodological interferences (53).
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iNTRODUCTiON

Contemporary diagnosis of thyroid disorders relies predomi-
nantly on point measurements of thyrotropin [thyroid-stimulat-
ing hormone (TSH)] concentration (1). While some guidelines 
recommend combining TSH measurements with free thyroxine 
(FT4) determination (2, 3), others constrain diagnostic workup 
on TSH measurements as a first-line diagnostic test and only 
recommend determining peripheral thyroid hormones, if TSH 
concentrations fall outside of their respective reference ranges 
(4–6). This strategy rests upon the assumptions of a log-linear 
relationship between TSH and FT4 (7–10), a long plasma half-life 
of thyroid hormones (11, 12) and tight coupling of all involved 
control elements of the feedback loop (13, 14). While TSH-based 
diagnostic interpretation may be inexpensive (at least at the 
beginning of the decision-making process) it is over-simplifying 
and involves considerable risks of both false positive and false 
negative results. Restrictions of TSH-based protocols include 
circadian and ultradian variation of TSH and thyroid hormones 
(15–18), the plasticity of central components of the feedback 
loop under substitution therapy with levothyroxine (19–22) and, 
as we will subsequently outline, reactive adjustments of thyroid 
homeostasis in certain phases of development and conditions of 
strain and stress (23–29).

The hypothalamic-pituitary-thyroid (HPT) axis acts as an 
adaptive, dynamic system, functioning in two distinct operat-
ing modes. The system operates as a homeostatic regulator in 
unstrained resting conditions, aiming at constant value control 
(30–33) and maintaining serum concentrations of thyroid hor-
mones in the vicinity of a fixed set point (17, 18, 34–38). The stable 
situation in equilibrium permits the use of TSH measurement for 
diagnostic purposes in thyroid disease. However, concentrations 
of TSH and thyroid hormones may be altered in other physiologi-
cal and pathological situations in the absence of any dysfunction 
of the thyrotropic control system or any of its elements (23–25, 

39–42). The feedback control mechanism is able to modify its 
transfer parameters, if a need arises, to tune consumption to 
available supply with oxygen, energy, and glutathione. The 
operating mode then shifts to a system of tracking control, which 
features a dynamically changing set point (26, 43–45). Clinical 
patterns emerging from this kind of adaptation are well known to 
physicians. They typically include, but are not limited to, altered, 
either low or high, T3 concentrations, changes in binding of thy-
roid hormones to plasma proteins and adjustment of the central 
control input. In humans, allostatic operation of the HPT axis was 
initially described in exhausting exercise, starvation, and systemic 
illness (46–52). Similar patterns were later observed under such 
diverse conditions as fetal life, major depression (MD), and space 
flight. However, adding further to the complexity of the constel-
lation, opposite changes have been described in other situations 
such as pregnancy, endurance exercise, and certain psychiatric 
diseases (Figure 1) (27–29).

The characteristic adaptive constellation of thyroid homeo-
stasis to severe illness is referred to as low-T3 syndrome, non-
thyroidal illness syndrome (NTIS), euthyroid sick syndrome 
(ESS) or thyroid allostasis in critical illness, tumors, uremia, and 
starvation (TACITUS). About 30% of hospitalized patients (54) 
and more than 60% of patients affected by critical illness (55, 56) 
experience transient changes in serum concentrations of TSH 
and thyroid hormones. Characteristic patterns are low levels of 
free and total 3,3′,5-triiodothyronine (T3) (39, 40, 56), impaired 
plasma protein binding of thyroid hormones (57, 58) and, in more 
severe cases, thyrotropic adaptation with a downward shift of the 
set point characterized by paradoxically low TSH levels in the 
presence of normal or even low concentrations of FT4 (59, 60).  
Conversely, serum concentrations of 3,5,5′-triiodothyronine 
(rT3) and 3,5-diiodothyronine (3,5-T2) are typically increased 
(39, 40, 61–63).

In severe illness, the presence of NTIS predicts poor progno-
sis (54, 60, 64–66). It is still a matter of fierce debate if patients 
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affected by the syndrome may benefit from substituting thyroid 
hormones (67–70). Importantly, significant problems in dif-
ferential diagnosis may arise from both considerable overlap 
of hormone concentrations in NTIS with those in primary or 
secondary thyroid disorders and by methodological interference 
with thyroid hormone assays (71–73).

This review article provides an overview of adaptive responses 
of thyroid homeostasis in type 1 and type 2 allostatic situations. 
It is based on a broad literature search executed with the search 
formulas “non-thyroidal illness OR non-thyroidal illness OR 
NTI OR NTIS OR TACITUS OR euthyroid sick OR low T3 OR 
low triiodothyronine OR Euthyroid Sick Syndromes [MeSH],” 
“(thyroid OR thyroxine OR triiodothyronine) AND (allostasis 
OR allostatic)” and “amygdala AND TRH” in PubMed, the 
authors’ own collections of literature and secondary publications 
referenced there. Where not otherwise specified information pro-
vided refers to the human organism. Data from animal research 
are reported, where information on the human metabolism is 
lacking.

HiSTORiCAL OveRview

Perhaps the first description of NTIS dates back to the tenth 
century BC, when King David was on his deathbed: “Now King 
David was old, and advanced in years: and when he was covered 
with clothes he was not warm.” [1 Kings 1:1]. Of note, David was 
not mentally impaired, since in the same time he had managed 
to defend Solomon, his designated successor, against a subtle 
conspiracy. Therefore, the situation described by the unknown 
author seems to represent an exclusively peripheral reduction of 
thyroid hormones, perhaps in the context of senescence and/or 
multi-morbidity.

In the human organism, transient alterations of thyroid hormone 
metabolism unrelated to pituitary or thyroid disease were first 
explicitly described in 1968, when Clifford Irvine reported reduced 
half-life of T4 in athletic training, which was reversible after three 
days’ rest (74). The same author had made similar observations in 
horses, where thyroxine secretion rate increased in training and 
adaptation to cold, and half-life decreased in trained animals (75). 
Shortly later, Harland and Orr described a significantly decreased 
half-life of T4, when rats were exposed to a cold environment (76). 
Transiently changed concentrations of thyroid hormones were first 
described in 1971 by Terjung and Tipton, who reported increased 
concentrations of free and total T4 during bicycle ergometer train-
ing and reduced total T4 levels 24 h later (46).

In 1973, Rothenbuchner et  al. reported decreased serum 
concentrations of T3 in the starving organism (47). Nearly 
simultaneously another group confirmed this observation in a 
different population (49). Shortly thereafter T3 concentrations 
were observed to be reduced in patients with critical illness 
requiring intensive care, in tumors and in uremia (48, 51, 52, 77).

The last four decades witnessed the discovery of many more 
pathologies that are associated with the low-T3 syndrome or 
other patterns of NTIS, including sepsis, circulatory arrest, 
stroke, myocardial infarction, pulmonary embolism, inflam-
matory bowel disease, renal failure, and gastrointestinal fistulae  
(24, 25, 39, 56, 66).

A pattern typical of “NTIS” was also observed specifically in 
non-pathological conditions, such as the fetal period, torpor in 
poikilotherm animals, and hibernation in certain mammalian 
species (78, 79). These observations suggested that ESS is not a 
dysfunction of the feedback loop, rather an allostatic reaction and 
potentially useful adaptation of the pituitary–thyroid feedback 
control system to reduced supplies in energy, oxygen, and glu-
tathione. We therefore recently coined a new term of TACITUS 
to provide a more neutral designation that encompasses several 
non-pathological conditions with adaptations of TSH and thyroid 
hormones (18, 35).

MeCHANiSMS OF THYROiD 
ALLOSTASiS

In situations of current or anticipated strain central and periph-
eral mechanisms interact to ensure a coordinated adaptation of 
thyroid hormone signaling (43). This is associated with a variety 
of alterations at the molecular level in nearly all tissues.

Cybernetic Principles of integrative 
Thyroid Control
Homeostatic control of thyroid function represents a classical 
example of a hypothalamic–pituitary-mediated endocrine feed-
back mechanism (Figure 2) (18, 35). Its principal mediators 
are hypothalamic thyrotropin-releasing hormone (TRH), 
pituitary thyrotropin (TSH), thyroxine (T4), and triiodothy-
ronine (T3).

Thyroid-stimulating hormone is a glycoprotein hormone with 
a rather short half-life of 50–60 min, which stimulates synthesis 
and release of T4 and to a lesser degree T3 from the thyroid 
gland via binding to a specific TSH receptor (35). With respect to 
classical thyroid hormone actions (effects mediated via nuclear 
thyroid hormone receptors) T4 is a prohormone requiring 
activation to the highly agonistic hormones T3 and 3,5-T2 to be 
effective. However, other non-classical actions of T4, acting, e.g., 
via integrin receptors, do not require prior activation, rendering 
T4 an active hormone with respect to non-classical effects (80).

Plasma T3 is derived from several sources, including direct 
formation in the thyroid gland and release by proteolysis of 
thyroglobulin (Tg), deiodination from T4 in the thyroid and 
deiodination in peripheral organs (12). T4 and T3 display 
prolonged plasma half-lives of 1  week and 1  day, respectively, 
resulting from intracellular accumulation and a high proportion 
of plasma protein binding (17, 35, 81). T3 affects most tissues in 
a pleiotropic manner. It also closes the feedback loop by inhibit-
ing both synthesis and release of TSH from the pituitary gland  
(17, 18, 35).

This “short” feedback loop is augmented by additional control 
motifs, including an ultrashort feedback loop of TSH release 
(17, 82), a long feedback loop, where thyroid hormones inhibit 
TRH release in the hypothalamus (83, 84), and a direct stimula-
tory effect of TSH on T3 formation. A TSH–T3 shunt has been 
predicted in animal and cell culture experiments (85–90), and 
we recently demonstrated its existence in the human organism 
(19, 22, 91–94).
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FigURe 2 | Thyroid homeostasis comprises ultrashort, short, and long feedback mechanisms. In addition, conversion between iodothyronines is adaptively 
mediated by three distinct deiodinases (18, 35). Deiodination is controlled by multiple local and global mediators including thyroid-stimulating hormone (TSH).
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The integrative control at the hypothalamic level is medi-
ated by parvocellular hypophysiotropic paraventricular nucleus 
(PVN) TRH neurons. Their activity provides an interface between 
thyroid hormone feedback, nutritional status, and stimulatory or 
inhibitory influences of the circadian rhythms (Figure 3) (95). In 
this respect, tanycytes lining the third ventricle play a pivotal role 
in central homeostasis. They are able to fine-tune the sensitivity 
of PVN via provision of central T3 and to degrade TRH via pyro-
glutamyl peptidase II (PPII) at the level of the median eminence 
(Figure 3) (95, 96).

Allostasis and Allostatic Load
In 1988, Sterling and Eyer extended the classical paradigm 
of homeostasis with the theory of allostasis (100). Briefly, an 
allostatic response is defined as a dynamic stress reaction that 
maintains stability through change (101). This distinct operating 
mode of homeostatic systems becomes apparent in straining and 
occasionally life-threatening situations. Allostasis both contains 
and extends the homeostatic principles by adapting set points and 

other boundaries of control (Table 1) (101). The primary media-
tors of allostatic response include but are not limited to catecho-
lamines, hormones of the hypothalamo-pituitary–adrenal (HPA) 
axis and cytokines (102). Of note, allostasis deals with a trade- 
off situation. It ensures survival in extreme situations, where, 
e.g., the demand of energy exceeds supply, but this protective 
reaction occurs at the expenses of a stress reaction (referred to as 
allostatic state), which, in turn, may have adverse consequences 
of its own. The cumulative result of an allostatic state is referred 
to as allostatic load of the organism (Figure 4). If allostatic load 
remains excessive or persists over a period of time it may confer 
pathology and turn out to be life threatening by its own nature 
(allostatic overload).

Usually, two types of allostatic load are distinguished. Type 1  
allostatic load occurs, if energy demands exceed the sum of 
energy intake and the amount of energy that can be mobilized 
from stores. Typical examples are breeding birds exposed to 
inclement weather conditions and the conflict of homeothermic 
animals resulting from reduced availability of food in cold 
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TAbLe 1 | Key concepts of homeostasis and allostasis (103, 104).

Homeostasis Allostasis

Constant or oscillating set point Changing set point
Physiologic equilibrium Compensated equilibrium
No or little anticipationa of demand Extensive anticipation of demand
No adjustment based on history Adjustment based on history
Adjustment carries no price Adjustment and accommodation carry  

a price (allostatic load)
No pathology Potentially leads to pathology

aAnticipatory components of homeostatic control are usually restricted to small effects 
of, e.g., circadian rhythms, while allostasic anticipation results in profound adaptation in 
the awaiting of major strains of threats.

FigURe 3 | Critical components of the central governor of thyroid homeostasis include parvocellular thyrotropin-releasing hormone (TRH) neurons, which integrate 
multiple afferent signals relaying information on nutrition and stress, and tanycytes lining the third ventricle at the blood–brain barrier, which are able to control both 
synthesis and degradation of thyrotropin-releasing hormone (TRH) via type 2 deiodinase (D2) and pyroglutamyl peptidase II (PPII) (95, 97–99).
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seasons, when they have both to save energy and to increase 
energy spending on maintaining body temperature (101). Type 
2 allostatic load results from expected increase in energy demand, 
although the cumulative energy balance is still sufficient. This 
constellation is typical of psychosocial stress situations, e.g., 
in predominating competitive social structures within animal 
populations and, as applied to humans, conflicts arising from 
differences in socioeconomic status (101). Multiple components 
of an unhealthy lifestyle including overnutrition, poor sleep, and 
toxic chemicals are also able to contribute to the phenotype of 
allostasis (107). Long-term consequences of type 2 allostatic 
load include obesity, hypertension, type 2 diabetes mellitus, 

endothelial cell damage, and dyslipidemia, i.e., classical compo-
nents of metabolic syndrome.

Our group has proposed to extend the concept of allostasis 
to the adaptive response of thyroid function in defined straining 
situations (35). This extension goes beyond the simple issue of 
energy balance, although thyroid hormones have an intricate 
relationship to energy homeostasis. While stimulating the 
mobilization of energy for metabolic usage thyroid hormones 
also increase its consumption. Their activation is coupled with 
a depletion of reduced glutathione stores involved in regenera-
tion of NADH and NADPH acting as cofactors of deiodinases  
(86, 87, 108–110). It may therefore be expected that when energy 
or glutathione availability does not meet their consumption, active 
thyroid hormones are selectively downregulated. By analogy to 
classical concepts we will subsequently refer to this situation as 
type 1 thyroid allostasis. Conversely, in situations, where energy 
stores have to be mobilized to meet anticipated demands (e.g., in 
pregnancy, endurance training and adaptation to cold weather 
conditions), upregulation of active thyroid hormones will be ben-
eficial. Since these situations bear a resemblance to classical type 
2 allostatic load, we will sum them up as type 2 thyroid allostasis. 
This is further justified because a high-T3 constellation in the 
absence of hyperthyroidism is also observed in obesity (111) and 
psychosocial stress (112), i.e., type 2 allostatic load according to 
the classic definition by McEwen and Wingfield.
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FigURe 4 | (A) In a physiological homeostatic system, afferent information is compared with a fixed set point, and the sensed discrepancy leads to counter-
regulatory activity of the effector. Negative (degenerative) feedback ensures static stability of the system. (b) In situations of allostasis, stress signals are looped in at 
a central level, thus resulting in ongoing offset signaling. Due to saturation of receptors and enzymes, this discrepancy reduces the efficiency of the effector and, if 
ongoing, gives rise to “wear and tear” reactions. Both mechanisms combine as allostatic load, which may be a source of pathology on its own (105, 106).
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In summary, unlike classical stress transduction systems the 
HPT axis produces two phenotypically distinct types of allostatic 
load if strained: in type 1 allostasis production of thyroid hor-
mones, especially T3, is downregulated, while it is upregulated 
in type 2 allostasis. In that respect, the thyroid stress reaction 
differs sharply from that of the HPA axis, the prime example of an 
allostatically controlled system, as the latter responds invariantly 
with increased release of cortisol.

Molecular Mechanisms of Thyroid 
Allostasis
In situations of starvation, inflammation, and oxidative stress, a 
variety of mediators (including nitric oxide, hydrogen peroxide, 
proteolysis-inducing factor, angiotensin II, TNF-α, and other 
cytokines) converge in the NF-κB pathway, a key regulatory 
system of immune response, cell proliferation, and apoptosis 
(113). Among multiple other effects the NF-κB/IL6 signaling 
pathway (114, 115) inhibits T3-induced expression of peripheral 
type 1 deiodinase. Downregulation of D1 and peripheral type 2 
deiodinase (D2) results in reduced concentrations of free and 
total T3 (41, 116).

Recent research revealed a complex interaction of insulin 
and thyroid hormone signaling in skeletal muscle, which might 
also extend to lung and liver tissue (117, 118). Via the PI3K–
mTORC2–Akt pathway insulin and IGF-1 inactivate FOXO1 by 
phosphorylation at Ser256, which leads to increased D2 activity 
(117). T3 again inhibits Akt activity, thereby closing a negative 
feedback loop (118). This mechanisms might play a pivotal role in 
linking reduced concentrations of insulin in fasting state (119) as 
well as decreased IGF-1 levels in a subgroup of critically ill (120) 
to hypodeiodination and consecutive low-T3 syndrome.

In isolation, decreased peripheral step-up deiodination 
would lead to increased (disinhibited) TSH release, which 
would result in elevated serum thyrotropin concentration. This, 

in turn, would reset the concentrations of T3 to their previous 
levels, thus neutralizing the effect of hypodeiodination. However, 
concomitantly with reduced peripheral step-up deiodination, 
D1 and D2 located in hypothalamic tanycytes (95), and the ante-
rior pituitary gland are upregulated. This change is mediated by 
bacterial lipopolysaccharide (121, 122), alterations in cytokines, 
e.g., IL-12 and IL-8 (43) and, possibly, increased concentrations 
of 3,5-diiodothyronine (61–63), triiodothyroacetate, and tetra-
iodothyroacetate (123, 124) during the acute phase response. 
The upregulation of central step-up deiodination results in 
increased central thyroid hormone signaling and, consequently, 
suppressed release of TRH and TSH. The seeming paradox that 
low-T3 syndrome may ensue from hyperdeiodination is resolved 
by the spatial diversity of deiodinase activity (Figure  5). This 
was investigated in  silico by computer simulations (20) and 
confirmed by means of animal experiments in vivo (83, 84, 121, 
122, 125–127).

A coordinated interaction of central and peripheral deiodi-
nases in the lead-up to low-T3 syndrome is further supported 
by upregulation of type 3 deiodinase (D3) in TACITUS (129, 
130), giving rise to elevated serum concentrations of rT3, a 
iodothyronine with inhibiting effects on thyroid hormone 
signaling. Increased D3 activity in starvation may be caused by 
decreased leptin concentrations as shown in mice experiments 
(23, 131). During prolonged critical illness, decreased food 
intake might be an important factor in regulating the activity of 
liver deiodinases (132). D3 in peripheral organs might also be 
upregulated by hypoxia due to decreased tissue perfusion during 
illness (133).

In addition, TSHb is decreased through IL-1b and TNF-α 
independently of T3 uptake and action in pituitary cells (134, 
135). Moreover, supraphysiological concentrations of IL-1a and 
IL-1b suppress cAMP accumulation, thus inhibiting the TSH-
induced Tg mRNA expression and Tg release in human cultured 
thyrocytes (136, 137).
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FigURe 5 | The phenotype of low-T3 syndrome may result from both 
peripheral hypodeiodination and central hyperdeiodination. Although FT3 
concentrations rise with increasing sum activity of peripheral type 1 
deiodinase (GD1), they descend with increasing activity of central type 2 
deiodinase (GD2). This seeming paradox is explained by feedback effects 
(20, 21). Despite research in humans being hindered by ethical and 
methodological barriers, results of computer simulations [shown is sensitivity 
analysis based on SimThyr 4.0 (128)] and animal experiments (126, 127) are 
consistent.
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Thyrotropin-releasing hormone neurons originating from 
the hypothalamic PVN, the major autonomic output area of 
the hypothalamus (95, 138–140), play a key role in the central 
control of thyroid homeostasis by providing a set point for the 
short loop control (141). The release of TRH is inhibited by 
central T3, which is predominantly generated by D2 expressed 
in tanycytes lining the third ventricle (142–145) (Figure  3). 
This circuit forms an additional long feedback mechanism of 
thyroid homeostasis (83, 84). Apart from the so defined cascade 
control mechanism, TRH neurons contribute to the coordina-
tion of global energy metabolism by integrating multiple afferent 
signals (146) including catecholamines (147, 148), cocaine- and 
amphetamine-regulated transcript (149, 150), leptin (151), and 
alpha-MSH (146, 152) (all stimulating) as well as neuropeptide Y  
(NPY) (153–155), agouti-related peptide (141, 146, 156), and 
glucocorticoids (146) (all inhibiting). Moreover, endocan-
nabinoids have been shown to exert inhibitory effects on TRH 
neurons via the type 1 cannabinoid receptor (97). Animal experi-
ments revealed that the integration of all afferent projections has 
profound effects on secretion of TRH and consecutively TSH in 
straining situations (95).

Depending on the origin of stress (physical or psychogenic), 
its duration and the animal’s endocrine and energetic status 
TRH release may be upregulated or downregulated (157) subse-
quently affecting the set point of the overall homeostatic system. 
Downregulation with consecutive thyrotropic adaptation, i.e., low  
or normal TSH levels despite low concentrations of T4 and/or 
T3, may occur for instance in cases of systemic infection and 
sepsis, where lipopolysaccharides induce D2 activity in tanycytes 
(126). Moreover, low TRH expression in the PVN characterizes 

the NTIS (95). In addition to the effects of NPY as neurotrans-
mitter, elevated fasting serum concentrations of NPY have a 
stimulatory effect on hepatic thyroid hormone degradation via 
increased glucuronoconjugation (facilitating biliary clearance) 
and sulfoconjugation (enabling step-down deiodination to rT3S) 
(140, 158).

A high proportion of the circulating iodothyronines is bound to 
thyroxine-binding globulin (TBG), transthyretine, and albumin. 
This mechanism contributes to the exceptionally long half-lives 
of thyroid hormones. In case of rapid onset of stress situations, 
e.g., severe illness, the time frame of the described control mecha-
nisms would be too long to be effective, if plasma protein binding 
of thyroid hormones remained unchanged. However, in critical 
illness the extent of plasma protein binding is reduced owing to 
decreased concentrations of binding proteins and the existence 
of certain binding inhibitors (57, 58, 159). This effect is putatively 
mediated via cytokines (160). Consequently, degradation of iodo-
thyronines is considerably accelerated, which represents another 
underlying mechanism toward the adaptation of the feedback 
loop to conditions of type 1 allostatic load (161–163).

In an animal model for prolonged critical illness the iodothy-
ronine membrane transporters MCT10 and OATP1C1 (but not 
MCT8) were increased, suggesting some adaptation at the level 
of transmembrane transport, however, with uncertain clinical 
relevance (164).

Finally, alternative metabolic pathways of thyroid hormones 
in peripheral tissues such as sulfation, conjugation to bile acids 
and glucuronide, and ether link cleavage may affect the concen-
trations of thyroid hormones in critical illness (165–169).

THYROiD ALLOSTASiS iN vARiOUS 
PHYSiOLOgiCAL AND PATHOLOgiCAL 
CONDiTiONS

A variety of scenarios associated with type 1 and type 2 allostatic 
load have been recognized to result in adaptive changes in thyroid 
homeostasis. Table 2 provides a short summary, and the associ-
ated conditions are subsequently described in more detail.

energy Restriction and Starvation
Early reports that serum concentrations of T3 are reduced in 
states of low caloric intake (47, 49) gave rise to the concept of what 
we now call the Low-T3 syndrome. Reduced T3 concentrations 
have been described in various conditions associated with energy 
deprivation, including anorexia nervosa (183–185), calorie-free 
diet in obesity (47), military combat training with caloric restric-
tions (186, 187) and other energy-deficient situations (188). Even 
moderate weight loss may result in hypodeiodination with con-
secutive decreased T3 concentrations (189). Today, at least three 
mechanisms explaining this finding are known (Figure 6) (23). 
In the fed state, peripheral step-up deiodination is stimulated by 
insulin (119) and bile acids (190–192). In addition, increased 
leptin concentrations facilitate release of TRH and TSH via 
the hypothalamic melanocortin pathway (23, 83, 146, 193). 
Together, these different mechanisms enhance conversion of T4 
to T3, thus mediating postprandial thermogenesis. Conversely, 
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TAbLe 2 | Characteristic phenotypical changes of thyroid-stimulating hormone 
(TSH) and various classical and non-classical thyroid hormones in certain 
allostatic situations show nearly opposing changes in type 1 and type 2 allostatic 
load (61, 63, 111, 123, 170–182).

TSH FT4 TT4 FT3 TT3 rT3

Type 1 allostasis in fetal period, acute and chronic critical illness, and 
in deprivation of energy

Fetal life ↓, → or ↑ ↓ ↓ ↓ ↓ ↑

Caloric deprivation → or ↓ → ↓ ↓ ↓ ↑

Exhausting exercise → or ↓ → ↓ ↓ ↓ ↑

Critical illness (general) → or ↓ → → or ↓ ↓ ↓ → or ↑

Chronic heart failure → or ↓ → → or ↓ ↓ ↓ → or ↑

Renal diseases → → or ↓ → or ↓ → ↓ →

Liver diseases → → or ↓ ↑ ↓ → or ↑ → or ↑

Pulmonary diseases → → → ↓ → → or ↑

Diabetes mellitus → or ↓ → or ↑ ↓ ↓ ↓ → or ↑

Sepsis ↓ → → or ↓ ↓ ↓ → or ↑

HIV infection → → or ↓ → → or ↓ → → or ↓

Depression → → or ↑ ↑ ↓ ↓ → or ↑

Type 2 allostasis-related conditions

Pregnancy → or ↓ → ↑ → ↑ →

Endurance training ↓, → or ↑ ↑ ↑ ↑ → or ↓ ↑

Obesity ↑ → or ↓ → or ↑ ↑ ↑ → or ↓

Adaptation to cold ↓, → or ↑ ↑ ↓, → or ↑ ↑ ↑ → or ↓

Acute schizophrenia → or ↑ → or ↑ ↑ → or ↑ ↑ →

Post-traumatic stress 
disorder

→ → ↑ ↑ ↑ ?

FT4 and FT3, free T4 and T3, respectively; TT4 and TT3, total (free + protein-bound) 
T4 and T3, respectively; rT3, reverse T3; TSH, thyroid-stimulating hormone.
Hormone concentration unchanged (→), increased (↑), decreased (↓), or not reported 
(?). Small studies also reported increased concentrations of 3,5-diiodothyronine  
(3,5-T2) (61–63), triiodothyroacetate and tetraiodothyroacetate (123, 124), and 
decreased concentrations of 3-monothyronamine (63) in critical illness and chronic 
heart failure (not shown in table). See text for definition of type 1 and type 2 allostasis  
in the context of pituitary–thyroid function.
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in fasting conditions concentrations of insulin, bile acids, and 
leptin are low, which results in decreased step-up deiodination 
and thyrotropic adaptation, and eventually in low-T3 syndrome. 
Additional mechanisms leading to impaired TSH release include 
increased expression of neuromedin B, a bombesin-related pep-
tide, which is an inhibitor of TSH secretion, and upregulation of 
hypothalamic D2 expression during fasting (23), resulting in low 
TRH expression in the PVN (25, 95, 98, 194).

Obesity
Obesity is a classical consequence of type 2 allostatic load (101). 
It is linked to multiple metabolic and endocrine responses (111) 
including thyroid function. The interconnection between thyroid 
hormones and body weight is bidirectional, and both hypothy-
roidism and hyperthyroidism are known to result in changes of 
body mass. Conversely, obesity may result in adaptive responses 
of thyroid homeostasis: a variety of studies, as recently reviewed 

by Pacifico et  al. (195) and Fontenelle et  al. (111), described 
elevated TSH levels and increased total step-up deiodinase 
activity (although predominantly within the reference range) in 
patients with weight gain, while concentration of rT3 has been 
reported to be decreased. Reversibility of these alterations after 
weight loss indicates that they are consequence rather than cause 
of overweight (196). A recent study (42) described a significant 
rise in TSH in the absence of peripheral hypothyroidism in men 
with non-metastatic prostate cancer undergoing androgen dep-
rivation therapy. The effect was mediated by body composition 
changes and by the fat-associated hormone leptin rather than 
androgen deficiency. Another study interrelated non-alcoholic 
fatty liver disease with higher fT3 concentrations in euthyroid 
subjects, probably consequent to central obesity (197). Both cen-
tral and peripheral components of the feedback loop are appar-
ently involved in the reactive adjustments to obesity (Figure 7). 
Increased concentrations of adipokines such as leptin have been 
proposed to be a key element of obesity-related thyroid allostasis, 
but mitochondrial dysfunction (195, 198), chronic inflammation, 
and insulin resistance (199) as well as both central and peripheral 
resistance to thyroid hormone may play additional roles (111).

Since thyroid hormones are potent stimulators of adaptive 
thermogenesis (202–204), upregulation of TSH release and 
deiodinase activity stimulates dissipation of energy and therefore 
may be part of autoregulatory mechanisms of body mass and fat 
storage. On the other hand, some of the obesity-related changes 
in thyroid function may contribute to the unfavorable metabolic 
phenotype of overweight (111). This and significant cardiovas-
cular side effects of hyperthyroidism are the main reasons that 
intake of thyroid hormones is strongly discouraged as an adjunct 
in the treatment of obesity (205).

Adaptive Thyroid Responses to 
Thermoregulatory Challenge
In mammals, thyroid hormones are potent mediators of efficient 
thermoregulation. This ensues from a complex mechanism 
tightly integrating deiodinase activity with sympathetic signals 
(206), which leads to upregulation of the protein UCP1 in mito-
chondria of skeletal muscle and brown adipose tissue (207–209). 
This results in uncoupled oxidative phosphorylation and finally 
non-shivering thermogenesis (202–204, 210, 211). It is therefore 
not surprising that mammals, typical examples for homeotherm 
animals (endotherm thermoregulators), usually exhibit elevated 
serum concentrations of T4 and T3 in winter and during hypo-
thermia as long as they are sufficiently fed (212, 213). Increased 
concentrations of TSH and/or thyroid hormones in cold seasons 
and during hypothermia have also been described in humans 
(214–217). Although the mechanism of thyroid hormone-
mediated expression of UCP1 plays a pivotal role in efficient 
thermoregulation of mammals (202, 218, 219) it has not been 
described in non-mammal homeotherm vertebrates, e.g., in birds, 
and it is probably inexistent in homeotherm arthropods. Of note, 
although some insect species, e.g., bombus and apis, are homeo-
therm (220, 221), their temperature regulation is less potent and 
less energy efficient than that of mammals. This may be in part 
due to the fact that they probably lack endogenous production of 
thyroid hormones (222–224).
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FigURe 6 | In starvation, both step-up deiodination (via D1 and D2) and thyroid-stimulating hormone (TSH) release are reduced, leading to low-T4 and low-T3 
constellations. rT3 concentrations may be increased. Black and red arrows indicate the direction of change from normal, homeostatic conditions in fed state.
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In hibernating mammals, the situation is different to that of 
non-hibernating mammals, since here concentrations of T4 and 
T3 are downregulated during hibernation (78, 225–228). This 
also applies to the endocrine response to cold in starving mam-
mals (229) and poikilotherm vertebrates during torpor (79).

In summary, during cold periods T3 and T4 are upregulated 
in fed non-hibernating homeotherm mammals, but in an NTIS-
like pattern downregulated in hibernating mammals, starving 
non-hibernating mammals and poikilotherm vertebrates. Both 
mechanisms support conservation of energy: the first one by 
making thermoregulation more efficient, and the second one by 
partly tuning down the metabolism in periods of lower demand 
and supply.

Fetal Life
Iodothyronines are critical for development in the embryonal 
and fetal periods. Both hypothyroidism (230) and oversupply 
with thyroid hormones (231) may result in fetal loss and severe 

developmental disorders. In humans, the fetal thyroid gland 
starts to secrete hormones in the beginning of the 12th week of 
gestation (29). However, the feedback loop begins to be func-
tional in the 20th week, i.e., in mid-gestation (29). In the first half 
of pregnancy, the fetus is largely dependent on maternal supply 
with thyroid hormones, probably explaining, why production of 
iodothyronines is upregulated in the mother (230). Despite this 
anti-NTIS-like pattern in the maternal metabolism, which is 
mainly mediated via human chorionic gonadotropin (hCG) and 
estrogens (230), concentrations of free and total T3 are low in the 
fetus throughout gestation, and concentrations of TBG, free and 
total T4 are, although rising with increasing gestational age (230), 
lower in the fetal than in the maternal circulation (Figure 8) (232). 
TSH levels attain a maximum of about 15 mIU/L in the 20th week, 
when the feedback loop maturates, and then again at birth (29). 
Both in fetal serum and in amniotic fluid, concentrations of rT3 
are markedly increased (230), which probably results from high 
activity of type 3 deiodinase in placental tissue and multiple fetal 
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FigURe 7 | High-T3 concentrations (although in most cases within the reference interval), reduced rT3 concentrations, increased activity of type 1 and type 2 
deiodinase, and comparatively high thyroid-stimulating hormone (TSH) levels are the typical signature of obesity, a classical phenotypical sequela of type 2 allostatic 
load. (A) In healthy participants of the NHANES program (200), concentrations of TSH and FT3 as well as Jostel’s TSH index (a measure for the set point of thyroid 
homeostasis) and SPINA-GD (an estimate for total deiodinase activity) show a significantly positive correlation to body mass index (BMI) and waist circumference, 
and with the exception of TSH also to body surface area (BSA). In addition, FT3 and SPINA-GD correlate negatively to age, and minor associations exist to 
creatinine-corrected urinary iodine excretion (UIE). In this circular map, positive correlations are marked in red and negative correlations in blue. The widths of the 
splines represent the correlation coefficient to denote the strengths of association (201). (b) Mechanisms of adaptive responses in obesity are mediated by elevated 
leptin concentrations and increased alpha-MSH signaling, while activity of AGRP terminals is reduced.
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organs (230). Increased concentrations of sulfated metabolites of 
iodothyronines result from low type 1 deiodinase activity in fetal 
tissues and because T4 sulfate and T3 sulfate are not substrates 
for placental type 3 deiodinase (230). At birth, concentrations of 
TSH, T4, and T3 sharply spike to attain slightly elevated levels in 
the neonatal metabolism (29).

These patterns of thyroid hormones in the normal fetus closely 
resemble the constellation of NTIS. The conclusion that the 
normal fetal concentrations of thyroid hormones are beneficial 
despite being markedly different from that of both healthy adults 
and healthy newborns is supported by the observation that this 
constellation is actively defended in situations of thyroid disorders 
(233): in hypothyroid fetuses D2 activity increases and activities of 
D1 and D3 decrease, thus providing support for shunting of T4 to 
brain tissue (230), while, on the contrary, elevated concentrations 
of iodothyronines stimulate the activity of D3, which results in 
increased degradation of active thyroid hormones to rT3, 3,3′-T2 
and 3′,5′-T2 (234–236).

Pregnancy
The adaptive endocrine response in pregnancy manages a trade-
off situation, where the maternal organism is faced with the dual 
challenge of optimizing conditions for the developing fetus and 
its own survival. Allostatic changes are mediated both by the 

central hypothalamic–pituitary unit and the fetal-placental unit. 
The latter secretes protein and steroid hormones that modify the 
function of endocrine organs in the mother’s organism through-
out pregnancy (237). Due to its high structural similarity with 
TSH, the glycoprotein hormone hCG stimulates the human TSH 
receptor, which enables the placenta to gain parallel control over 
the thyroid system in early gestation (238). In extreme situations, 
e.g., starvation, the adaptive gestational responses control type 
1 allostasis. Mostly, however, resources are sufficient to permit 
an anticipatory endocrine response of type 2 allostasis. Typical 
responses of the pituitary–thyroid axis in pregnancy include 
enhanced secretion of thyroxine from the thyroid gland and 
increased step-up deiodination. Unlike in obesity or other states 
of type 2 allostasis, TSH concentrations are low-normal or slightly 
decreased (230) (Figure  8B). This is a consequence of both 
elevated concentrations of T4 and hCG (stimulating TSH recep-
tors in the anterior pituitary gland). In addition, plasma protein 
binding of thyroid hormones is increased. The majority of these 
effects are mediated by hCG, which displays, in addition to its 
gonadotropic action, mild TSH-mimicking effects in its sialylated 
form and TSH-antagonistic effects in a desialylated variant (239). 
Thyroid overstimulation by hCG is possible in pregnant women 
in the first trimester resulting in a distinct entity of gestational 
hyperthyroidism or hyperthyroidism in trophoblastic diseases, 
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FigURe 8 | Fetal and maternal thyroid homeostasis are dovetailed to optimize conditions for both organisms. (A) After maturation of the feedback loop in the 20th 
week of gestation, fetal thyroid-stimulating hormone (TSH) concentrations and step-down deiodination via D3 are temporarily increased, while step-up deiodination 
is decreased. This results in a pattern of markedly reduced T3 concentrations and elevated rT3 levels. Black and red arrows indicate the difference compared to 
normal, homeostatic conditions in healthy newborns and adults. (b) Pregnancy is accompanied by a characteristic “anti-NTIS”-like constellation of thyroid 
homeostasis including high concentrations of T3 and T4, step-up hyperdeiodination and increased binding of thyroid hormones to plasma proteins.
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which may also affect men with testicular cancer (238, 240–247). 
This scenario exceeds physiological adaptation and translates into 
a specific disease entity. It demonstrates the strength of hCG-
mediated effects, which confer a not so rare risk of subclinical 
hyperthyroidism in otherwise normal pregnancies (238).

The “anti-NTIS”-like pattern of maternal thyroid homeostasis 
in pregnancy results in increased availability of thyroid hormones 
for the developing fetus, which is especially necessary in the 
early phases of gestation, when the fetal thyroid is still unable to 
produce sufficient amounts of thyroid hormones, the more as the 
transport capacity through the placental barrier is limited.

Pregnancy-related allostatic changes in thyroid function 
are frequently causing problems in the differential diagnosis 
of thyroid disease as described below in the Section “Methods 
of Assessment and Differential Diagnosis.” Because a sufficient 
supply with levothyroxine is critical for the development of 
the fetus, thresholds for initiation of substitution in subclinical 
hypothyroidism and dosage adjustment in hypothyroid women 
taking L-T4 prior to pregnancy had been lowered by professional 
societies (248–251). Based on evidence the American Thyroid 
Association and the Endocrine Society had recommended to 
lower the upper range of the TSH reference range to 2.5, 3.0, and 
3.5 mIU/L in the first, second, and third trimester of pregnancy, 
respectively. Although several observational studies reported 
adverse pregnancy outcome in even mild hypothyroidism  
(252–261), two recent interventional trials did not confirm a 
beneficial effect of substitution therapy in subclinical hypothy-
roidism and hypothyroxinemia with respect to children’s IQ 
at age of 5  years and secondary outcome markers (262, 263). 
Consequently, the recommended upper limit of the TSH refer-
ence range has been raised back to 4 mIU/L in the most recent 

guideline issued by the American Thyroid Association (264). 
However, thyroid peroxidase antibodies should be measured in 
pregnant women with TSH concentration above 2.5 mIU/L and 
treatment be considered, if antibody titers are positive, even if 
TSH levels are between 2.5 and 4 mIU/L (264).

The reason for these discrepancies and the lack of success by 
interventional studies is unknown. Ethnic differences among 
study populations (265) and the inverted U shape of the relation 
between maternal FT4 concentration and child IQ (266–268) as 
well as the relatively late onset of substitution therapy after the 
10th week of gestation in the reported substitution trials (262, 263)  
may play a role. This uncertainty warrants further research.

exercise
Intensive muscle activity in sports and training is associated with 
profound changes in endocrine control (27) and cytokine patterns 
(269, 270). This suggests modifications of thyroid homeostasis 
during or after exercise.

The response of thyroid hormones to exercise varies 
(Figure 9). With a few exceptions (271–273), most studies inves-
tigating thyroid hormones during or in a short-time interval after 
training found elevated concentrations of TSH, T4 and/or T3  
(46, 274–276). After resting or in prolonged training programs with 
repeated heavy strain, however, the majority of studies described 
reduced concentrations of TSH, T4, and T3 (186, 187, 277–281). 
This seeming contradiction was attributed to hemoconcentration 
in or after exercise leading to falsely elevated hormone concentra-
tions in short-time exercise (27). This assumption is supported 
by trials, where thyroid hormones have been measured both 
on short and long timescales. Hormone concentrations, while 
elevated during physical strain or at exhaustion decreased at rest 
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FigURe 9 | The adaptive response of the hypothalamic–pituitary thyroid axis to exercise is heterogeneous, depending on duration and intensity of training and on 
the interval between exercise and laboratory investigations (27). This diversity may result from pre-analytical factors (e.g., hemoconcentration) and from an overlap  
of type 1 and type 2 allostatic load. (A) Exhausting exercise. (b) Endurance training.
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after exercise (46, 186, 275–277). Resting allows for rehydration 
and represents a more realistic situation. As a consequence it has 
been recommended to allow for a 24-h recovery period before 
participants report for laboratory testing (282).

Of note, TSH and thyroid hormone concentrations are elevated 
in endurance exercise and in the beginning of military combat 
training before exhaustion (186, 277, 283), even if allowance 
was made for resting and rehydration before investigation (283). 
With the onset of exhaustion, the pattern changes and hormone 
concentrations decrease to subnormal values (186, 187, 277). This 
suggests that the variable homeostatic response to exercise may 
possibly result from a second mechanism, where type 1 allostasis 
ensues from exhaustion and deprivation of energy, thereby lead-
ing to downregulation of TSH and peripheral thyroid hormones, 
whereas in endurance training and before exhaustion allostasis is 
shifted to type 2 and stimulated release of TSH, T4 and T3.

The NTIS-like pattern of thyroid hormones after exhausting 
training is confirmed by two studies showing increased rT3 
concentrations (187, 283) in physical strain. The type 1 allostatic 
endocrine responses were more pronounced in military combat 
training programs, when participants were subject to additional 
deprivation of sleep and energy (186, 187, 277).

Acute and Chronic Critical illness
Characteristic patterns of NTIS have been described in a mul-
titude of acute and chronic somatic illnesses including states of 
shock (284), circulatory arrest (285, 286), respiratory failure (65), 
community-acquired pneumonia (287), sepsis (288), chronic 
respiratory (289, 290) and cardiovascular (61, 64, 66, 291, 292) 
disease, renal failure (293–298), COPD (289), gastrointestinal 
diseases (299–301), autoimmune diseases (71, 302, 303), and 

cancer (130, 290, 304). Phenotypes of NTIS with high and high-
normal FT4 concentrations have been described in dementia and 
frailty in elderly persons (305).

While most forms of acute critical illness may be interpreted 
as a state of starvation, the chronic form of severe illness—a result 
of modern critical care—represents most commonly a state of 
adequate nutrition (306). Hence it is not surprising that acute 
and chronic critical illness elicit different phases of NTIS: the 
acute phase (Figure  10A) and the chronic or prolonged phase 
(Figure  10B), also referred to as wasting syndrome (307). The 
former seems to beneficially affect outcome, the latter to have an 
impairing effect (308).

Non-thyroidal illness syndrome is a disease-independent 
risk factor for survival, so it is important to understand the 
underlying mechanisms (60). Patients with low free T3 show a 
significantly higher mortality and a significantly longer duration 
of mandatory ventilation (56, 309). Furthermore, low free T3 is 
a strong prognostic predictor in B-cell lymphomas (310). The 
alterations of the acute phase of NTIS in critical illness occur 
within hours or days and are defined by increased release of 
anterior pituitary hormones, low levels of anabolic peripheral 
effector hormones, reduced thyroid hormone-binding protein 
concentration, reduced binding affinity, reduced expression 
of thyroid hormone transporters, decreased thyroid hormone 
uptake and altered expression of D1 and D3 activity and the 
thyroid hormone receptor alpha1 (TRα1). The prolonged phase, 
on the other hand, is characterized by a suppression of the 
hypothalamic-anterior-pituitary-peripheral-hormone axis and 
low levels of anabolic peripheral effector hormones. Peripheral 
tissues respond by reactively increasing the expression of mono-
carboxylate transporters, upregulating D2 activity, reducing D1 
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FigURe 10 | Depending on severity and duration of disease, non-thyroidal illness syndrome presents with two related, but distinct phenotypes. (A) Allostatic 
reactions of the pituitary–thyroid feedback control system in acute illness lead to slightly decreased T3 and 3,3′-T2 concentrations, slightly elevated T4 and 3′,5′-T2 
levels and markedly increased rT3 concentrations. (b) Medium-term and long-term adaptations in ongoing illness (“wasting syndrome”) and chronic disease result  
in thyrotropic adaptation and slight increases of rT3, 3,3′-T2, and 3,5-T2 concentrations concomitant to low-T3 syndrome.
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activity, and increasing sensitivity to thyroid hormone receptors. 
The chronic phase is characterized by a loss of pulsatility of TSH 
secretion, a reduced TRH-gene expression in the hypothalamic 
PVN, and suppressed hypothalamic stimulation. However, the 
pathogenesis is unclear. Altered D3 activity and MAPK and 
hedgehog pathway seem to play a pivotal role in the whole 
process (311). Despite our current knowledge, critical questions 
remain unanswered.

Psychosocial Stress and Psychiatric 
Diseases
The relationship between thyroid hormones and psychological 
phenomena is a paramount example of mutual and reciprocal 
influences of mind and body. It had been recognized for more 
than 150 years that diseases of the thyroid are frequently accom-
panied by psychiatric symptoms (312, 313). Although depression 
is a classical symptom of hypothyroidism, and psychosis may 
result from thyrotoxicosis, the linkage is clearly bidirectional 
(314). A great number of studies over the last decades showed 
that characteristic changes of thyroid hormone concentration 
may arise from mental or psychological disorders (28, 314) in 
the absence of thyroid disease. This assumption is confirmed 
by interventional studies that show normalization of formerly 
changed hormonal parameters after the underlying psychiatric 
disease has been successfully treated.

As early as in 1968 John Mason predicted thyroid hormone 
concentrations to rise in response to psychosocial stress (315). 
Subsequent research revealed that the interaction is complex and 
non-linear and that it is additionally dependent on the nature of 
the underlying psychiatric disease. A recent study demonstrated 

that stress could trigger the onset and the recurrence of hyper-
thyroidism in patients with Graves’ disease (316). However, 
hyperthyroxinemia is indeed a nearly universal observation in 
different expressions of psychiatric disorders (317–322).

A large body of studies reported a characteristic pattern of 
thyroid hormones in MD (314, 323). Concentrations of T4 or FT4 
are commonly increased during depression (324–329) and revert 
after recovery from MD, irrespective of the modality of treatment 
(330–339). Despite the presence of elevated T4 concentrations 
TSH levels tend to be normal in depressive patients, but circadian 
variation of TSH concentration is impaired (339–342) and the 
response to TRH test is blunted (323). Both total and free T3 
concentrations are reduced in MD (175, 176, 343), but elevated 
in bipolar I disorder (237, 344). Concomitantly, rT3 concentra-
tions are temporarily increased in both MD and manic disorder; 
however, not in bipolar I disorder (334, 345, 346).

Similar to the situation in bipolar I disorder, concentrations 
of free and total T3 are frequently elevated in post-traumatic 
stress disorder (PTSD) (177–179, 181, 182, 347), another classical 
example of a type 2 allostatic reaction (112). Except for concomi-
tant borderline personality disorder (348), the common high-T3 
syndrome in PTSD is at least partly due to increased step-up 
deiodination (179, 181, 182). Two studies in combat veterans of 
World War II and the Vietnam war revealed levels of total T4 
and both total and free T3 to significantly correlate to severity of 
PTSD (181, 349). This anti-NTIS-like pattern is complemented 
by elevated TBG concentrations and increased plasma protein 
binding in these patients compared to healthy controls (179). 
Despite an elevated set point of thyroid homeostasis the response 
to TRH stimulation is blunted in PTSD (350).
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FigURe 11 | A complex interaction of positive and negative feedback mechanisms linking centers of the limbic system to hypothalamic nuclei explains the adaptive 
response of the hypothalamic–pituitary thyroid loop in type 2 allostasis resulting from psychosocial stress situations (355, 356, 358, 359). ARC, arcuate nucleus of 
the hypothalamus; BNST, bed nucleus of the stria terminalis; CRH, corticotrophin-releasing hormone; DA, dopamine; GABA, gamma-aminobutyric acid; LC, locus 
coeruleus; NAcc, nucleus accumbens; OT, oxytocin; VTA, ventral tegmental area.
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A small number of studies reported elevated concentrations 
of FT4, TT3, and FT3 in schizophrenia spectrum disorders. This 
observation was, however, not reproducible in all studies and 
apparently dependent on severity of symptoms and the time after 
admission (351, 352).

In summary, MD is accompanied by a partly NTIS-like pat-
tern, whereas bipolar I disorder and PTSD as well as severe and 
newly diagnosed schizophrenia involve a hormone constellation 
typical of type 2 allostasis. A relatively high set point for T4 is 
shared by all four disorders, as evidenced by unsuppressed TSH 
levels despite high T4 concentrations, whereas the response to the 
TRH test is mitigated.

Although our knowledge of the precise mechanisms mediat-
ing the endocrine response in this class of affective disorders is 
still limited, recent research revealed some elements that may 
play a key role in this scenario. For a long time, it was assumed 
that central TRH, which has in addition to its endocrine function 
widespread neurotransmitter and neuromodulatory effects, has a 
pivotal function in the link between depression and altered thy-
roid hormones. While TRH concentrations in CSF are increased 
in depressed patients (353, 354) and TRH levels are particularly 

high in subjects with violent suicidal behavior (353), the results 
after treatment and in recovery are inconsistent (323). A decisive 
influence possibly lies in the spatial distribution of neuromodula-
tors and the complex interaction of positive and negative feedback 
loops between the limbic system and hypothalamus (Figure 11). 
TRH expression is upregulated in the amygdala in response to 
stress (355) and amygdala kindling (356), but downregulated in 
hippocampus (357). Via two pathways, such as the stria terminalis 
and the ventral amygdalofugal pathway, the amygdala stimulates 
the PVN, the origin of hypophysiotropic TRH neurons, with 
cholinergic and glutamatergic terminals (358). As a consequence, 
TSH release increases in  situations of stress-induced type 2 
allostasis (359). Of note, amygdala activity is inhibited again 
by means of feedback loops mediating the anxiolytic-like effect 
of TRH (360). In addition, the activity of the feedforward path 
is sensitive to context and circadian conditions, too (361). This 
complexity warrants further research.

From a teleological perspective, the type 1 allostatic pattern 
in depression makes sense. Depression and starvation represent 
sickness behavior, a common final path of the sickness syndrome, 
which may be beneficial by promoting social immunity (362). 
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In this model, depression is the mediator between inflammation 
and NTIS.

NON-HOMeOSTATiC MeCHANiSMS

In illness, changes of measured hormone concentration may 
result from exogenous factors including pharmacological effects 
of drugs and assay interference. They have in common that they 
do not represent an adaptive homeostatic reaction of the organ-
ism. As these effects are common in TACITUS, overlap with the 
phenotype of NTIS and can be confused with allostatic reactions, 
the following section delivers a short overview over triggering 
scenarios and their consequences.

Drug effects
A large number of drugs is known to influence thyroid func-
tion interfering with various mechanisms of thyroid hormone 
metabolism (363). Lithium and aminoglutethimide decrease 
thyroid hormone secretion. A high iodine load, as it ensues from 
amiodarone and/or radiocontrast dye application, decreases both 
central and peripheral deiodinases activity (364–368). In addi-
tion to causing hypodeiodination, amiodarone has antagonistic 
actions on T3 signaling, presumably due to its molecular similar-
ity to thyroid hormones (369, 370). Dopamine, glucocorticoids, 
and somatostatin analogs suppress TSH release (371). Thyroxine 
absorption is altered by multiple substances including caffeine, 
bile acid sequestrants, sucralfate, ferrous sulfate, and aluminum 
hydroxide (372). This results in disruption of the enterohepatic 
circulation of thyroid hormones, thus contributing to reduced 
half-life. Moreover, many drugs alter thyroxine and triiodothy-
ronine transport in serum such as estrogens, tamoxifen, heroin, 
methadone, mitotane, androgens, anabolic steroids, furosemide, 
NSAIDs, and salicylates by either increasing or decreasing TBG 
concentration or displacing them from protein-binding sites 
(363, 373). Antiepileptic drugs such as phenobarbital, phenytoin, 
and carbamazepine increase hepatic metabolism of thyroxine and 
triiodothyronine. In addition to amiodarone propylthiouracil, 
macrolides, and unselective beta-adrenergic blockers inhibit 
the activity of type 1 deiodinase (374), while sorafenib is able to 
increase D3 activity (375).

Assay interferences
Significant problems in FT4 and FT3 assay interpretation can arise 
in the varying performance of tests from different manufacturing 
sources (376, 377). For example many tests are affected by residual 
interference from effects of albumin concentrations that are often 
considerably reduced in NTIS and thereby lead to artificially low 
estimates of FT3 or FT4. In addition, some tests are insufficiently 
robust to the lower concentrations of thyroid hormone-binding 
proteins overall found in these conditions. Some drugs used in 
severe illness can also distort the results directly by displacing 
bound thyroid hormones. FT3 tests appear to suffer more in this 
regard than FT4 tests, though both can be compromised (377).

This can significantly affect conclusions as to the exact mag-
nitude of allostatic effects on thyroid function and may hinder 
comparison of any findings from studies using different methods 
of measurement. The most convincing results will therefore be 

found using assays with minimal interference and closest adher-
ence to the Mass Action criteria governing the working of such 
assays.

eFFeCTS OF HeTeROgeNeOUS OR 
UNKNOwN ORigiN

The subsequently described influences originate from human 
civilization. They therefore fail to trigger a natural adaptive res-
ponse of thyroid homeostasis. Since their action is complex, it is 
possible, however, that some of the associated mechanisms elicit 
an allostatic reaction by physiological mimicry of natural factors.

endocrine Disruptors
Multiple industrial substances in the environment are able to 
profoundly modify thyroid function (378–380). The mechanisms 
are as heterogeneous as the substances, and there is some overlap 
to drug effects (see above). This applies, e.g., to perchlorate, which 
inhibits iodine uptake into the thyroid and may therefore cause 
primary hypothyroidism (381, 382). Primary hypothyroidism 
may also result from exposure to polyhalogenated aromatic 
hydrocarbons (383) and bisphenol A (384). The effects of poly-
chlorinated biphenyls (PCBs) include increased hepatic degrada-
tion of thyroid hormones and inhibition of deiodinase activity, 
which applies predominantly to cerebral D3 (385–387). Typical 
high-T3 syndromes under PCB exposure are therefore probably 
caused by decreased D3 activity rather than by stimulated D1 or 
D2 activity. Some plant-derived substances have thyromimetic 
effects and lead to decreased concentrations of TSH, FT4, and 
FT3 (388). In reality, endocrine disruptors are rarely present 
in isolated forms. Interactions among different disruptors are 
complex and may be additive, sub-additive, and super-additive, 
depending on the individual combination of substances and their 
respective concentrations (389–391). This makes the effects dif-
ficult to predict in the individual situation. Endocrine disruptors 
may result in clinical thyroid disease whose etiology is hard to 
pinpoint.

Space Flight
Space journeys expose the human organism to multiple chal-
lenges. They include low or zero gravity, radiation, and impaired 
circadian rhythm. It is, therefore, not surprising, that manned 
space exploration is associated with multiple hormonal changes 
(392). Among them, alterations of the HPT axis seem to play 
a minor, but potentially significant role. Crewmembers of the 
Spacelab D-2 mission had slightly increased TSH concentration 
during flight, suggesting a form of subclinical hypothyroidism 
(393). These results are compatible to observations in rats and 
rhesus monkeys (394–397). The most plausible reason for slightly 
impaired thyroid function during spaceflight is the utilization of 
iodinated water (398). Iodine was used as a bactericidal agent 
in US spacecraft water systems until 1997, when a device was 
implemented in Space Shuttles (and later the International Space 
Station) to remove iodine from water before consumption. As 
a result post-flight TSH elevations are no longer observed in 
astronauts (399). However, regardless of iodine removal, in male 
astronauts TT4 concentrations and FT4 index continue to be 
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higher after space flight and T3 concentrations are decreased 
after flight. Due to unknown reasons this NTIS-like pattern is 
observed in men only, but not in women (399).

MeTHODS OF ASSeSSMeNT AND 
DiFFeReNTiAL DiAgNOSiS

Allostatic adaptations of the HPT axis frequently pose serious 
problems for diagnosis and differential diagnosis of thyroid dis-
orders, because concentrations of both TSH and peripheral thy-
roid hormones may change considerably and fall widely outside 
their normal reference ranges. A diagnostic problem arises from 
the fact that reference ranges for thyroid parameters have been 
established for healthy non-pregnant adults under resting and 
fed conditions—a premise that is not invariably met, especially 
not in conditions accompanied by both severe thyroid dysfunc-
tion and systemic illness or pregnancy, where early diagnosis is 
essential. Moreover, even the uncompromised reference interval 
for TSH varies significantly by age, sex, hour of day, and ethnicity 
(400).

The endocrine features of TACITUS share overlapping ele-
ments with all of the following diseases, hypothyroidism (low-T3 
concentration and, in chronic illness, reduced T4 concentration, 
and even elevated TSH in the recovery phase), hyperthyroidism 
(transiently increased FT4 levels and occasionally low TSH con-
centrations) and hypopituitarism (thyrotropic adaptation with low 
TSH levels despite low or normal FT4 concentrations) (73). This 
may present a huge challenge for differential diagnosis (24, 35). 
For instance, the combination of reduced TSH level and normal or 
even slightly increased FT4 concentration, which arises from mark-
edly different half-lives of TSH and T4 in transitional periods of 
thyrotropic adaptation, may be confused with subclinical or overt 
hyperthyroidism (71). The situation is even more complex as the 
clinical spectrum of numerous severe diseases shares phenotypi-
cal features with hypothyroidism or thyrotoxicosis, respectively 
(72). As an example, sepsis is usually associated with fever and 
hyperdynamic circulation including tachycardia and peripheral 
vasodilatation, which are also characteristic for thyroid storm. 
Conversely, myxedema coma is marked by impaired vigilance, 
hypothermia, hypercapnia, and bradycardia, and it is therefore 
difficult to differentiate from critical non-thyroidal illnesses. Even 
subclinical hyperthyroidism may pose a risk to patients, especially 
to those, who are required to receive a high iodine load, e.g., in 
form of amiodarone or iodinated radiocontrast agents—proce-
dures that are frequently necessary in the critically ill.

It is therefore both essential and difficult to distinguish 
TACITUS from diseases that are accompanied by decreased TSH 
levels, e.g., thyrotoxicosis and hypopituitarism. If FT3 and FT4 
are both elevated or at least in the upper quintile of the respective 
reference ranges the diagnosis of thyrotoxicosis is straightforward. 
The differential diagnosis between TACITUS and subtle forms of 
subclinical hyperthyroidism or hypopituitarism may be more dif-
ficult, especially if an isolated thyrotropic dysfunction is present. 
A history of prior symptoms and signs of pituitary dysfunction 
may be helpful. It is also useful to evaluate the function of the 
corticotropic axis in patients with critical illness and possible 

TACITUS. In case of dysfunction treatment with glucocorticoids 
should be commenced prior to thyroid hormone substitution.

Hypothyroidism associates mostly with elevated TSH 
levels. Positive antithyroid antibodies support the diagnosis of 
Hashimoto thyroiditis, however without proving the diagnosis of 
hypothyroidism and in most cases with significant delay.

Thyroid dysfunction induced by amiodarone therapy may lead 
to laboratory findings similar to TACITUS. Medical and drug his-
tory may help to approach the right diagnosis. Differential diag-
nosis is more complex, if typical amiodarone-induced changes of 
thyroid function are to be distinguished from amiodarone-induced 
thyrotoxicosis (e.g., in tachyarrhythmia), since in both cases FT4 
concentrations may be elevated (by impaired deiodination under 
amiodarone or by hypersecretion of thyroxine, respectively).

Today, most intensive care units are equipped with ultrasound 
devices. Therefore, thyroid ultrasonography may be used as 
an inexpensive and non-invasive method to visualize size and 
internal structure of the thyroid gland. Thyroid enlargement, the 
presence of nodules (especially of TIRADS class 2 and colloid 
types 2 and 3) or diffuse hyperperfusion of the thyroid are indica-
tive of hyperthyroidism.

Challenges in the assessment of thyroid function during 
pregnancy result from the normal gestational changes in thyroid 
activity and increased prevalence of conditions that cause hyper-
thyroidism in pregnancy (401). Additional uncertainty arises 
from an ongoing controversy, if levels of total (264) or free thyroid 
hormones (401, 402), measured either via immunoassays (403) or 
LC/tandem mass spectrometry (404), are the preferred targets for 
diagnostic interpretation (248, 405). There is no doubt, however, 
that laboratory investigations must always be accompanied by 
careful clinical evaluation of the patient’s symptoms and history 
(401). Some professional guidelines suggested trimester-specific 
reference intervals for the concentrations of TSH and peripheral 
thyroid hormones (248, 264, 406), while the recent guideline 
of the American Thyroid Association recommended elevating 
the upper limit of the reference range back to 4  mIU/L (264). 
Considering the significant differences among guidelines and the 
conflicting results of clinical trials critical questions still remain 
unanswered.

Calculating model-based structure parameters of thyroid 
homeostasis may be helpful in differential diagnosis (407). 
Recent studies have used mathematical models for diagnosis and 
prognosis of thyroid disorders, such as Hashimoto thyroiditis and 
Graves’ disease (408, 409). Multiple studies showed total step-up 
deiodinase activity (SPINA-GD) to be significantly reduced in 
subjects affected by NTIS (61, 299–301). In patients with heart 
disease, SPINA-GD negatively correlated to age, atrial conduc-
tion time, and concentrations of B-type natriuretic peptide as well 
as 3,5-diiodothyronine (3,5-T2), and it predicted atrial fibrilla-
tion after cardiac surgery (61). In a study with 219 obese patients 
SPINA-GT, an estimate of thyroid’s secretory capacity, assisted 
in identifying subjects with mild secretory insufficiency of the 
thyroid (410). In chronic renal failure, SPINA-GT correlated 
to creatinine clearance, suggesting toxic effects of azotemia on 
thyroid function (411). Calculating the ratios of total to free T4 
(TT4/FT4) (300, 301) and of total to free T3 (TT3/FT3) (300) 
may be helpful to screen for impaired plasma protein binding of 
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thyroid hormones in NTIS. Jostel’s TSH index, a measure for thy-
rotropic anterior pituitary function (412), is decreased in patients 
with central adaptation in TACITUS syndrome (299). Despite 
accumulating evidence for the use of structure parameters in 
NTIS, their diagnostic utility is still insufficiently evaluated, and 
they have not been studied in other situations of thyroid allostasis 
including starvation, pregnancy, and psychiatric diseases. They 
have emerged, however, as valuable tools for clinical research 
(19–22, 24, 92, 94, 407).

TReATMeNT OF LOw-T3 SYNDROMe iN 
TACiTUS—AN OPeN QUeSTiON

As noted above, low-T3 syndrome and other components of 
NTIS correlate to severity of disease and independently predict 
the outcome of affected patients (54, 60, 64–66, 413–416). Guided 
by the idea that NTIS represents a form of illness-mediated 
hypothyroidism, it was suggested to treat the condition with 
levothyroxine (L-T4) or liothyronine (L-T3) with the expectation 
to improve the prognosis of critically ill patients (39, 70).

In fact certain surrogate markers, e.g., hemodynamic 
parameters and other markers of cardiovascular function, were 
demonstrated to improve after initiation of treatment with L-T3 
(417, 418). With one exception of preterm infants (419) hard 
endpoints including survival could not be ameliorated by thyroid 
hormone administration (25, 170, 420, 421). In contrary, some 
studies observed even detrimental effects of therapy (25).

IL6-induced oxidative stress decreases the catalytic activity of 
D1 and D2. Selenium supplementation failed to demonstrate a 
beneficial effect on NTIS, although it improves critical intracel-
lular antioxidant functions, particularly of selenoproteins (115). 
By providing bacteriotoxic iodine atoms, increased step-down 
deiodination due to stimulated D3 activity might be beneficial by 
defending against bacterial infections (55).

Several studies have demonstrated that treatment of the 
underlying disease can aid in the resolution of NTIS (422, 423).

In conclusion, universal substitution therapy cannot cur-
rently be recommended in TACITUS (424). Vastly insufficient 
diagnostic methods, as noted above, hinder the development 
of valid laboratory-based decision criteria that would help to 
safely identify critically ill patients with mild hypothyroidism. 
Diagnosis of myxedema coma therefore still relies on score 
systems, which either incorporate TSH and FT4 concentrations 
among other parameters (425, 426) or completely renounce the 
use of hormone measurements (426, 427).

CONCLUSiON

The hypothalamus–pituitary–thyroid feedback control mechanism 
is a dynamic adaptive system. In resting equilibrium conditions of 
healthy adults the behavior of all elements involved is sufficiently 
stable to be diagnostically interpretable. This changes dramatically 
in straining situations such as starvation, exhaustion, or non- 
thyroidal illness. In the latter situations requirements of energy, 
oxygen or glutathione exceed supply, prompting the control loop to 
switch to a different operating mode that helps to adjust consump-
tion to available resources. This type of allostatic response is termed 

type 1 and it is marked by low-T3 syndrome, reduced plasma pro-
tein binding of thyroid hormones, thyrotropic adaptation, and high 
concentrations of rT3. A similar constellation is observed during 
the fetal life. An inverted response pattern is seen in cases of predic-
tive adaptation marked by type 2 allostatic load (including obesity, 
endurance training, adaptation to cold and post-traumatic stress 
disease). Here, concentrations of TSH, FT3, and TT3 are elevated, 
as is the plasma protein binding of thyroid hormones. A partly 
similar pattern to type 2 allostasis is seen in pregnancy.

Is thyroid allostasis beneficial or harmful? Perhaps an answer 
can be found in the very extremes of thyroid function, thyroid 
storm and myxedema coma. Although both diseases are located 
in opposing edges of the functional spectrum, they share a special 
kind of interaction between dysregulation of thyroid homeostasis 
and increased sensitivity of the organism to altered thyroid hor-
mone signaling. They also have a pathophysiological pattern in 
common: the preexisting thyroid dysfunction may remain oligo-
symptomatic and undiscovered for years, yet an unspecific trigger 
(e.g., infection, apoplexy, or myocardial infarction) may ignite a 
complex causal network that results in a life-threatening crisis 
(72, 426). Thyroid storm is a form of insufficient adaptation, since 
thyrotoxicosis prevents the development of TACITUS in cases of 
critical illness. On the other hand, myxedema coma represents a 
form of overcompensation, which is marked by a massive ampli-
fication of hypothyroidism by the development of NTIS in severe 
disease. Both forms of thyroid crisis are life threatening: thyroid 
storm by insufficient allostasis and myxedema coma by allostatic 
overload. These examples illustrate the Janus-faced character of 
allostasis: although lifesaving in many cases it may occasionally 
threaten survival through the burden of allostatic load.

Differential diagnosis of type 1 and type 2 allostasis from 
peripheral or central thyroid dysfunction may be difficult, the 
more as physiological reactions of the feedback loop overlap 
with non-homeostatic mechanisms including drug effects, pre-
analytical factors and assay flaws in critical illness (Figure 1).

In an allostatic context correct interpretation of thyroid func-
tion cannot be based on simple diagnostic rules or laboratory 
tests. Rather it requires a deep understanding of physiology and 
a comprehensive diagnostic strategy that integrates the patient’s 
history, clinical parameters, and laboratory findings. Developing 
and validating reliable algorithms that support the required level 
of integration is a fundamental task for future thyroid research.
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